
Algorithms: DFS, STRONGLY

CONNECTED COMPONENTS,

FLOWS

Ola Svensson

School of Computer and Communication Sciences

Lecture 15, 09.04.2024

Pseudocode of DFS

a

2/7

b

1/12
c

8/11

d 9/10

e

13/16

f

14/15
g

5/6
h

3/4

time = 16

Lecture 15, 09.04.2024

Runtime Analysis

↭ Color each vertex white takes time !(V)
↭ Note that DFS-Visit is called once for each vertex (when it is colored gray

from white)
↭ When DFS-Visit(u) is called the for loop runs at most {#neighbors of u}

times
↭ Therefore the total time DFS-Visit is run is

∑

u→V

{#neighbors of u} = !(E)

Total Time: !(V + E)

Lecture 15, 09.04.2024

PROPERTIES OF DFS

Lecture 15, 09.04.2024

Output of DFS

DFS forms a depth-first forest comprised of > 1 depth-first trees. Each

tree is made of edges (u, v) such that u is gray and v is white when

(u, v) is explored.

Tree edge: In the depth-first forest, found by exploring (u, v)

Back edge: (u, v) where u is a descendant of v
Forward edge: (u, v) where v is a descendant of u, but not a tree edge

Cross edge: any other edge

a

2/7

b

1/12

c

8/11

d 9/10

e

13/16

f

14/15

g

5/6
h

3/4

Lecture 15, 09.04.2024

Classification of edges
Tree edge: In the depth-first forest, found by exploring (u, v)

Back edge: (u, v) where u is a descendant of v
Forward edge: (u, v) where v is a descendant of u, but not a tree edge

Cross edge: any other edge

In DFS of an undirected graph we get only tree and back/forward (we call them back)
edges, no cross edges. Why?

a

2/7

b

1/12

c

8/11

d 9/10

e

13/16

f

14/15

g

5/6
h

3/4

Lecture 15, 09.04.2024

Parenthesis theorem

For all u, v exactly one of the following holds

1 [u.d , u.f] and [v .d , v .f] are disjoint neither of u and v are

descendant of each other

2 u.d < v .d < v .f < u.f and v is a descendant of u
3 v .d < u.d < u.f < v .f and u is a descendant of v .

a

2/7

b

1/12

c

8/11

d 9/10

e

13/16

f

14/15

g

5/6
h

3/4

Lecture 15, 09.04.2024

White-path theorem

Vertex v is a descendant of u if and only if at time u.d there is a path

from u to v consisting of only white vertices (except for u, which was

just colored gray)

a

2/7

b

1/12

c

8/11

d 9/10

e

13/16

f

14/15

g

5/6
h

3/4

Lecture 15, 09.04.2024

TOPOLOGICAL SORT

Application of DFS

Lecture 15, 09.04.2024

Topological sort

Definition

INPUT: A directed acyclic graph (DAG) G = (V , E)

OUTPUT: a linear ordering of vertices such that if (u, v) → E , then u
appears somewhere before v

Lecture 15, 09.04.2024

Example

Getting dressed in the morning:

in which order?

Lecture 15, 09.04.2024

First: when is a directed graph acyclic?

Lecture 15, 09.04.2024

First: when is a directed graph acyclic?

Lemma

A directed graph G is acyclic if and only if a DFS of G yields no back
edges

Proof. First show that back-edge implies cycle
Suppose there is a back edge (u, v). Then v is ancestor of u in depth-first forest.
Therefore there is a path from v to u, which creates a cycle.

v

u

T

T

T

B

Lecture 15, 09.04.2024

First: when is a directed graph acyclic?

Lemma

A directed graph G is acyclic if and only if a DFS of G yields no back
edges

Proof. Second show that cycle implies back-edge
Let v be the first vertex discovered in the cycle C and let (u, v) be the preceding edge
in C . At time v .d vertices in C form a white-path from v to u and hence u is a
descendant of v .

v

u

T

T

T

B

Lecture 15, 09.04.2024

Algorithm for topological sort

Topological-Sort(G):

1. Call DFS(G) to compute finishing times v .f for all v → G .V
2. Output vertices in order of decreasing finishing times

Example

Lecture 15, 09.04.2024

Time Analysis

Topological-Sort(G):

1. Call DFS(G) to compute finishing times v .f for all v → G .V
2. Output vertices in order of decreasing finishing times

Do not need to sort by finishing times

↭ Can just output vertices as they are finished and understand that

we want the reverse of the list

↭ Or put them onto the front of a linked list as they are finished.

When done, the list contains vertices in topologically sorted order.

Time: !(V + E) (same as DFS)

Lecture 15, 09.04.2024

Correctness

Need to show that if (u, v) → E then v .f < u.f
When we explore (u, v) what are the colors of u and v?

↭ u is gray

↭ Is v gray, too?

↭ No, because then v would be ancestor of u which implies that

there is a back edge so the graph is not acyclic (by previous

Lemma)

↭ Is v white?

↭ Then becomes descendant of u. By parenthesis theorem,

u.d < v .d < v .f < u.f
↭ Is v black?

↭ Then v is already finished. Since we are exploring (u, v), we

have not yet finished u. Therefore, v .f < u.f .

Lecture 15, 09.04.2024

STRONGLY CONNECTED COMPONENTS

(A magic algorithm)

Lecture 15, 09.04.2024

What is a Strongly Connected Component?

Definition: A strongly connected component (SCC) of a directed graph

G = (V , E) is a maximal set of vertices C ↑ V such that for all u, v → C ,

both u ! v and v ! u.

Example:

a b c d e

f g h i j

Is this a SCC? NO, because e.g. c ↓! b

Lecture 15, 09.04.2024

What is a Strongly Connected Component?

Definition: A strongly connected component (SCC) of a directed graph

G = (V , E) is a maximal set of vertices C ↑ V such that for all u, v → C ,

both u ! v and v ! u.

Example:

a b c d e

f g h i j

Is this a SCC? NO, because not maximal

Lecture 15, 09.04.2024

What is a Strongly Connected Component?

Definition: A strongly connected component (SCC) of a directed graph

G = (V , E) is a maximal set of vertices C ↑ V such that for all u, v → C ,

both u ! v and v ! u.

Example:

a b c d e

f g h i j

Is this a SCC? YES!

Lecture 15, 09.04.2024

Component Graph

For a digraph G = (V , E), its component graph GSCC = (V SCC, ESCC) is defined by:
↭ V SCC has a vertex for each SCC in G;
↭ ESCC has an edge if there’s an edge between the corresponding SCC’s in G.

G

a b c d e

f g h i j

a b c d e

f g h i j

GSCC

Lecture 15, 09.04.2024

Component Graph

For a digraph G = (V , E), its component graph GSCC = (V SCC, ESCC) is defined by:
↭ V SCC has a vertex for each SCC in G;
↭ ESCC has an edge if there’s an edge between the corresponding SCC’s in G.

G

a b c d e

f g h i j

a b c d e

f g h i j

GSCC

Lemma: GSCC
is a DAG.

Lecture 15, 09.04.2024

Magic Algorithm

SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.

Graph GT
is the transpose of G :

↭ GT
= (V , E), ET

= {(u, v) : (v , u) → E}.

↭ GT
is G with all edges reversed.

Observations:

↭ Can create GT
in !(V + E) time if using adjacency lists.

↭ G and GT
has the same SCCs.

Lecture 15, 09.04.2024

Magic Algorithm

a b c d e

f g h i j

14/19 15/16 3/4 1/12 6/9

17/18 13/20 2/5 10/11 7/8

Lecture 15, 09.04.2024

SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.

Analysis

Runtime analysis: Each step takes !(V + E) so total running time is

!(V + E)

Why does it work? Intuition:

↭ The first DFS orders SCC’s in topological order (recall GSCC
is

acyclic)

↭ Second DFS then outputs the vertices in each SCC

Formal proof in book

Lecture 15, 09.04.2024

SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.

FLOW NETWORKS

Lecture 15, 09.04.2024

Flow Network

Transfer as much cheese as possible from Gruyere to Lausanne

s

v1

v2

v3

v4

t

Gruyere

Bern Neuchatel

Geneve Morges

Lausanne
16

13

4

14

12

9

20

4

7

Capacity: at most 20 cheeses can be
transferred from Neuchatel to Lausanne

Source Sink

↭ a graph to model flow through edges (pipes)

↭ each edge has a capacity an upper bound on the flow rate (pipes

have di!erent sizes)

↭ Want to maximize rate of flow from the source to the sink

Lecture 15, 09.04.2024

Tons of applications

Lecture 15, 09.04.2024

Tons of applications

Lecture 15, 09.04.2024

Flow Network (formally)

s

v1

v2

v3

v4

t

3

2

3

3

2

1

3

2

3

↭ Directed graph G = (V , E)

↭ Each edge (u, v) has a capacity c(u, v) ↔ 0 (c(u, v) = 0 if (u, v) " E)

↭ Source s and sink t (flow goes from s to t)

↭ No antiparallel edges (assumed w.l.o.g. for simplicity)

Lecture 15, 09.04.2024

Why is “no antiparallel edges” w.l.o.g.?

u v

1

5

↗ u v

v ’
1 1

5

↭ If there are two parallel edges (u, v) and (v , u), choose one of them say (u, v)

↭ Create a new vertex v ↑

↭ Replace (u, v) by two new edges (u, v ↑) and (v ↑, v) with
c(u, v ↑) = c(v ↑, u) = c(u, v)

↭ Repeat this O(E) times to get an equivalent flow network with no antiparallel
edges.

Lecture 15, 09.04.2024

Definition of a flow

s

v1

v2

v3

v4

t

0/

1/3

0/

2/2

1/3

2/3

2/2

0/

1/1
2/3

1/2

1/3

A flow is a function f : V ↘ V ≃ R satisfying:

Capacity constraint: For all u, v → V : 0 ⇐ f (u, v) ⇐ c(u, v)

Flow conservation: For all u → V \ {s, t},

∑

v→V

f (v , u)

︸!!!!!!!!!!︷︷!!!!!!!!!!︸
flow into u

=

∑

v→V

f (u, v)

︸!!!!!!!!!!︷︷!!!!!!!!!!︸
flow out of u

Lecture 15, 09.04.2024

Definition of a flow

s

v1

v2

v3

v4

t

0/3

0/2

0/3

1/3

0/3

0/2

0/1
0/3

2/3

0/2

1/2

0/3

1/3

A flow is a function f : V ↘ V ≃ R satisfying:

Capacity constraint: For all u, v → V : 0 ⇐ f (u, v) ⇐ c(u, v)

Flow conservation: For all u → V \ {s, t},

∑

v→V

f (v , u)

︸!!!!!!!!!!︷︷!!!!!!!!!!︸
flow into u

=

∑

v→V

f (u, v)

︸!!!!!!!!!!︷︷!!!!!!!!!!︸
flow out of u

Lecture 15, 09.04.2024

Value of a flow

s

v1

v2

v3

v4

t

0/3

0/2

0/3

0/3

0/2

0/1
0/3

0/2

0/3

Value of a flow f = |f |

=

∑

v→V

f (s, v) ⇒
∑

v→V

f (v , s)

= flow out of source ⇒ flow into source

Lecture 15, 09.04.2024

Value of a flow

s

v1

v2

v3

v4

t

0/

1/3

2/2

1/3

2/3

2/2

1/1
2/3

1/2

1/3

Value of a flow f = |f |

=

∑

v→V

f (s, v) ⇒
∑

v→V

f (v , s)

= flow out of source ⇒ flow into source

Lecture 15, 09.04.2024

What’s the value of this flow? 9

Lecture 15, 09.04.2024

L. R. Ford, Jr. (1927-) D, R, Fulkerson (1924-1976)

MAXIMUM-FLOW PROBLEM

Ford-Fulkerson Method

Lecture 15, 09.04.2024

The Ford-Fulkerson Method’54

Ford-Fulkerson-Method(G , s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p
4. return f

Basic idea:

↭ As long as there is a path from source to sink, with available

capacity on all edges in the path

↭ send flow along one of these paths and then we find another path

and so on

Lecture 15, 09.04.2024

Applying the basic idea to examples

↭ As long as there is a path from source to sink, with available capacity on all
edges in the path

↭ send flow along one of these paths and then we find another path and so on

s t

Exists a path p from s to t

with remaining capacity
↓ Push flow on p

3/5 3/3 3/7 3/4

Lecture 15, 09.04.2024

Applying the basic idea to examples

↭ As long as there is a path from source to sink, with available capacity on all
edges in the path

↭ send flow along one of these paths and then we find another path and so on

s t

No path from s to t

with remaining capacity

and the flow is maximum

3/5 3/3 3/7 3/4

Lecture 15, 09.04.2024

Applying the basic idea to examples

↭ As long as there is a path from source to sink, with available capacity on all
edges in the path

↭ send flow along one of these paths and then we find another path and so on

s t

1/1

1/1

1/1

1/1

No path from s to t

with remaining capacity

and the flow is maximum

Lecture 15, 09.04.2024

Applying the basic idea to examples

↭ As long as there is a path from source to sink, with available capacity on all
edges in the path

↭ send flow along one of these paths and then we find another path and so on

s t

1/1

1

1

1/1

1/1

No path from s to t

with remaining capacity

but the flow is not maximum

What went wrong? How can we fix it?

Lecture 15, 09.04.2024

Residual network

↭ Given a flow f and a network G = (V , E)

↭ the residual network consists of edges with capacities that represent

how we can change the flow on the edges

Residual capacity:

cf (u, v) =






c(u, v) ⇒ f (u, v) if (u, v) → E
f (v , u) if (v , u) → E
0 otherwise

Amount of capacity left

Amount of flow that
can be reversed

Residual network:

Gf = (V , Ef) where Ef = {(u, v) → V ↘ V : cf (u, v) > 0}

Lecture 15, 09.04.2024

The Ford-Fulkerson Method’54

Ford-Fulkerson-Method(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f

No augmenting path and flow
of value 2 is optimal

G and f

s t

1/1

1/1

1/1

0/1

1/1

Gf

s t

1

1

1

1

1

Lecture 15, 09.04.2024

Lecture 15, 09.04.2024

Summary

↭ Graphs fundamental object to study

↭ Two natural ways of traversing a graph: breadth-first search and

depth-first search

↭ Topological sort of acyclic graphs by applying DFS and then order

according to decreasing finishing times

↭ Strongly connected components

↭ Flow Networks

Lecture 15, 09.04.2024

