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Pseudocode of DFS

a

2/7

b

1/12
c

8/11

d 9/10

e

13/16

f

14/15
g

5/6
h

3/4

time = 16
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Runtime Analysis

↭ Color each vertex white takes time !(V )
↭ Note that DFS-Visit is called once for each vertex (when it is colored gray

from white)
↭ When DFS-Visit(u) is called the for loop runs at most {#neighbors of u}

times
↭ Therefore the total time DFS-Visit is run is

∑

u→V

{#neighbors of u} = !(E)

Total Time: !(V + E )
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PROPERTIES OF DFS
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Output of DFS

DFS forms a depth-first forest comprised of > 1 depth-first trees. Each

tree is made of edges (u, v) such that u is gray and v is white when

(u, v) is explored.

Tree edge: In the depth-first forest, found by exploring (u, v)

Back edge: (u, v) where u is a descendant of v
Forward edge: (u, v) where v is a descendant of u, but not a tree edge

Cross edge: any other edge

a

2/7

b

1/12

c

8/11

d 9/10

e

13/16

f

14/15

g

5/6
h

3/4
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Classification of edges
Tree edge: In the depth-first forest, found by exploring (u, v)

Back edge: (u, v) where u is a descendant of v
Forward edge: (u, v) where v is a descendant of u, but not a tree edge

Cross edge: any other edge

In DFS of an undirected graph we get only tree and back/forward (we call them back)
edges, no cross edges. Why?

a

2/7

b

1/12

c

8/11

d 9/10

e

13/16

f

14/15
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Parenthesis theorem

For all u, v exactly one of the following holds

1 [u.d , u.f ] and [v .d , v .f ] are disjoint neither of u and v are

descendant of each other

2 u.d < v .d < v .f < u.f and v is a descendant of u
3 v .d < u.d < u.f < v .f and u is a descendant of v .

a
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b

1/12

c

8/11

d 9/10

e

13/16
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White-path theorem

Vertex v is a descendant of u if and only if at time u.d there is a path

from u to v consisting of only white vertices (except for u, which was

just colored gray)

a
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b

1/12

c

8/11
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e

13/16

f

14/15

g

5/6
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TOPOLOGICAL SORT

Application of DFS
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Topological sort

Definition

INPUT: A directed acyclic graph (DAG) G = (V , E )

OUTPUT: a linear ordering of vertices such that if (u, v) → E , then u
appears somewhere before v
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Example

Getting dressed in the morning:

in which order?
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First: when is a directed graph acyclic?
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First: when is a directed graph acyclic?

Lemma

A directed graph G is acyclic if and only if a DFS of G yields no back
edges

Proof. First show that back-edge implies cycle
Suppose there is a back edge (u, v). Then v is ancestor of u in depth-first forest.
Therefore there is a path from v to u, which creates a cycle.

v

u

T

T

T

B
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First: when is a directed graph acyclic?

Lemma

A directed graph G is acyclic if and only if a DFS of G yields no back
edges

Proof. Second show that cycle implies back-edge
Let v be the first vertex discovered in the cycle C and let (u, v) be the preceding edge
in C . At time v .d vertices in C form a white-path from v to u and hence u is a
descendant of v .

v

u

T

T

T

B

Lecture 15, 09.04.2024



Algorithm for topological sort

Topological-Sort(G):

1. Call DFS(G) to compute finishing times v .f for all v → G .V
2. Output vertices in order of decreasing finishing times

Example
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Time Analysis

Topological-Sort(G):

1. Call DFS(G) to compute finishing times v .f for all v → G .V
2. Output vertices in order of decreasing finishing times

Do not need to sort by finishing times

↭ Can just output vertices as they are finished and understand that

we want the reverse of the list

↭ Or put them onto the front of a linked list as they are finished.

When done, the list contains vertices in topologically sorted order.

Time: !(V + E ) (same as DFS)
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Correctness

Need to show that if (u, v) → E then v .f < u.f
When we explore (u, v) what are the colors of u and v?

↭ u is gray

↭ Is v gray, too?

↭ No, because then v would be ancestor of u which implies that

there is a back edge so the graph is not acyclic (by previous

Lemma)

↭ Is v white?

↭ Then becomes descendant of u. By parenthesis theorem,

u.d < v .d < v .f < u.f
↭ Is v black?

↭ Then v is already finished. Since we are exploring (u, v), we

have not yet finished u. Therefore, v .f < u.f .
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STRONGLY CONNECTED COMPONENTS

(A magic algorithm)
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What is a Strongly Connected Component?

Definition: A strongly connected component (SCC) of a directed graph

G = (V , E ) is a maximal set of vertices C ↑ V such that for all u, v → C ,

both u ! v and v ! u.

Example:

a b c d e

f g h i j

Is this a SCC? NO, because e.g. c ↓! b
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What is a Strongly Connected Component?

Definition: A strongly connected component (SCC) of a directed graph

G = (V , E ) is a maximal set of vertices C ↑ V such that for all u, v → C ,

both u ! v and v ! u.

Example:

a b c d e

f g h i j

Is this a SCC? NO, because not maximal
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What is a Strongly Connected Component?

Definition: A strongly connected component (SCC) of a directed graph

G = (V , E ) is a maximal set of vertices C ↑ V such that for all u, v → C ,

both u ! v and v ! u.

Example:

a b c d e

f g h i j

Is this a SCC? YES!
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Component Graph

For a digraph G = (V , E), its component graph GSCC = (V SCC, ESCC) is defined by:
↭ V SCC has a vertex for each SCC in G;
↭ ESCC has an edge if there’s an edge between the corresponding SCC’s in G.

G

a b c d e

f g h i j

a b c d e

f g h i j

GSCC
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Component Graph

For a digraph G = (V , E), its component graph GSCC = (V SCC, ESCC) is defined by:
↭ V SCC has a vertex for each SCC in G;
↭ ESCC has an edge if there’s an edge between the corresponding SCC’s in G.

G

a b c d e

f g h i j

a b c d e

f g h i j

GSCC

Lemma: GSCC
is a DAG.
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Magic Algorithm

SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.

Graph GT
is the transpose of G :

↭ GT
= (V , E ), ET

= {(u, v) : (v , u) → E}.

↭ GT
is G with all edges reversed.

Observations:

↭ Can create GT
in !(V + E ) time if using adjacency lists.

↭ G and GT
has the same SCCs.
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Magic Algorithm

a b c d e

f g h i j

14/19 15/16 3/4 1/12 6/9

17/18 13/20 2/5 10/11 7/8
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SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.



Analysis

Runtime analysis: Each step takes !(V + E ) so total running time is

!(V + E )

Why does it work? Intuition:

↭ The first DFS orders SCC’s in topological order (recall GSCC
is

acyclic)

↭ Second DFS then outputs the vertices in each SCC

Formal proof in book

Lecture 15, 09.04.2024

SCC(G):

1. Call DFS(G) to compute finishing times u.f for all u.
2. Compute GT

3. Call DFS(GT ) but in the main loop, consider vertices
aaain order of decreasing u.f (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest
aaaformed in second DFS as a separate SCC.



FLOW NETWORKS
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Flow Network

Transfer as much cheese as possible from Gruyere to Lausanne

s

v1

v2

v3

v4

t

Gruyere

Bern Neuchatel

Geneve Morges

Lausanne
16

13

4

14

12

9

20

4

7

Capacity: at most 20 cheeses can be
transferred from Neuchatel to Lausanne

Source Sink

↭ a graph to model flow through edges (pipes)

↭ each edge has a capacity an upper bound on the flow rate (pipes

have di!erent sizes)

↭ Want to maximize rate of flow from the source to the sink
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Tons of applications
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Tons of applications

Lecture 15, 09.04.2024



Flow Network (formally)

s

v1

v2

v3

v4

t

3

2

3

3

2

1

3

2

3

↭ Directed graph G = (V , E )

↭ Each edge (u, v) has a capacity c(u, v) ↔ 0 (c(u, v) = 0 if (u, v) " E)

↭ Source s and sink t (flow goes from s to t)

↭ No antiparallel edges (assumed w.l.o.g. for simplicity)
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Why is “no antiparallel edges” w.l.o.g.?

u v

1

5

↗ u v

v ’
1 1

5

↭ If there are two parallel edges (u, v) and (v , u), choose one of them say (u, v)

↭ Create a new vertex v ↑

↭ Replace (u, v) by two new edges (u, v ↑) and (v ↑, v) with
c(u, v ↑) = c(v ↑, u) = c(u, v)

↭ Repeat this O(E) times to get an equivalent flow network with no antiparallel
edges.
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Definition of a flow

s

v1

v2

v3

v4

t

0/

1/3

0/

2/2

1/3

2/3

2/2

0/

1/1
2/3

1/2

1/3

A flow is a function f : V ↘ V ≃ R satisfying:

Capacity constraint: For all u, v → V : 0 ⇐ f (u, v) ⇐ c(u, v)

Flow conservation: For all u → V \ {s, t},

∑

v→V

f (v , u)

︸!!!!!!!!!!︷︷!!!!!!!!!!︸
flow into u

=

∑

v→V

f (u, v)

︸!!!!!!!!!!︷︷!!!!!!!!!!︸
flow out of u
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Definition of a flow

s

v1

v2

v3

v4

t

0/3

0/2

0/3

1/3

0/3

0/2

0/1
0/3

2/3

0/2

1/2

0/3

1/3

A flow is a function f : V ↘ V ≃ R satisfying:

Capacity constraint: For all u, v → V : 0 ⇐ f (u, v) ⇐ c(u, v)

Flow conservation: For all u → V \ {s, t},

∑

v→V

f (v , u)

︸!!!!!!!!!!︷︷!!!!!!!!!!︸
flow into u

=

∑

v→V

f (u, v)

︸!!!!!!!!!!︷︷!!!!!!!!!!︸
flow out of u
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Value of a flow

s

v1

v2

v3

v4

t

0/3

0/2

0/3

0/3

0/2

0/1
0/3

0/2

0/3

Value of a flow f = |f |

=

∑

v→V

f (s, v) ⇒
∑

v→V

f (v , s)

= flow out of source ⇒ flow into source
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Value of a flow

s

v1

v2

v3

v4

t

0/

1/3

2/2

1/3

2/3

2/2

1/1
2/3

1/2

1/3

Value of a flow f = |f |

=

∑

v→V

f (s, v) ⇒
∑

v→V

f (v , s)

= flow out of source ⇒ flow into source
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What’s the value of this flow? 9
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L. R. Ford, Jr. (1927-) D, R, Fulkerson (1924-1976)

MAXIMUM-FLOW PROBLEM

Ford-Fulkerson Method
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The Ford-Fulkerson Method’54

Ford-Fulkerson-Method(G , s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p
4. return f

Basic idea:

↭ As long as there is a path from source to sink, with available

capacity on all edges in the path

↭ send flow along one of these paths and then we find another path

and so on
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Applying the basic idea to examples

↭ As long as there is a path from source to sink, with available capacity on all
edges in the path

↭ send flow along one of these paths and then we find another path and so on

s t

Exists a path p from s to t

with remaining capacity
↓ Push flow on p

3/5 3/3 3/7 3/4
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Applying the basic idea to examples

↭ As long as there is a path from source to sink, with available capacity on all
edges in the path

↭ send flow along one of these paths and then we find another path and so on

s t

No path from s to t

with remaining capacity

and the flow is maximum

3/5 3/3 3/7 3/4
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Applying the basic idea to examples

↭ As long as there is a path from source to sink, with available capacity on all
edges in the path

↭ send flow along one of these paths and then we find another path and so on

s t

1/1

1/1

1/1

1/1

No path from s to t

with remaining capacity

and the flow is maximum
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Applying the basic idea to examples

↭ As long as there is a path from source to sink, with available capacity on all
edges in the path

↭ send flow along one of these paths and then we find another path and so on

s t

1/1

1

1

1/1

1/1

No path from s to t

with remaining capacity

but the flow is not maximum

What went wrong? How can we fix it?
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Residual network

↭ Given a flow f and a network G = (V , E )

↭ the residual network consists of edges with capacities that represent

how we can change the flow on the edges

Residual capacity:

cf (u, v) =






c(u, v) ⇒ f (u, v) if (u, v) → E
f (v , u) if (v , u) → E
0 otherwise

Amount of capacity left

Amount of flow that
can be reversed

Residual network:

Gf = (V , Ef ) where Ef = {(u, v) → V ↘ V : cf (u, v) > 0}
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The Ford-Fulkerson Method’54

Ford-Fulkerson-Method(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f

No augmenting path and flow
of value 2 is optimal

G and f

s t

1/1

1/1

1/1

0/1

1/1

Gf

s t

1

1

1

1

1
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Summary

↭ Graphs fundamental object to study

↭ Two natural ways of traversing a graph: breadth-first search and

depth-first search

↭ Topological sort of acyclic graphs by applying DFS and then order

according to decreasing finishing times

↭ Strongly connected components

↭ Flow Networks
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