

Algorithms: DFS, STRONGLY CONNECTED COMPONENTS, FLOWS

Ola Svensson

EPFL School of Computer and Communication Sciences

Lecture 15, 09.04.2024

Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == \text{WHITE}$

DFS-VISIT(v)

$u.color = \text{BLACK}$

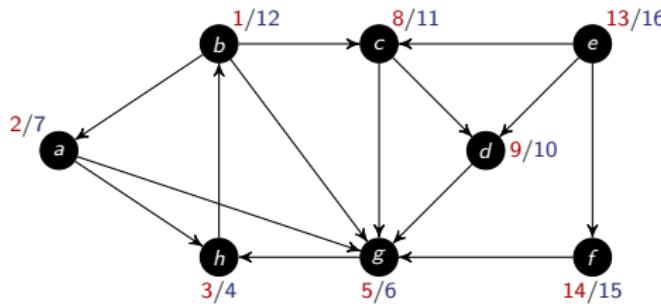
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



time = 16

Runtime Analysis

DFS(G)

```
  for each  $u \in G.V$ 
     $u.color = \text{WHITE}$ 
     $time = 0$ 
    for each  $u \in G.V$ 
      if  $u.color == \text{WHITE}$ 
        DFS-VISIT( $G, u$ )
```

DFS-VISIT(G, u)

```
   $time = time + 1$ 
   $u.d = time$ 
   $u.color = \text{GRAY}$            // discover  $u$ 
  for each  $v \in G.Adj[u]$       // explore  $(u, v)$ 
    if  $v.color == \text{WHITE}$ 
      DFS-VISIT( $v$ )
     $v.color = \text{BLACK}$ 
   $time = time + 1$ 
   $u.f = time$                   // finish  $u$ 
```

- ▶ Color each vertex white takes time $\Theta(V)$
- ▶ Note that DFS-VISIT is called once for each vertex (when it is colored gray from white)
- ▶ When DFS-VISIT(u) is called the **for** loop runs at most $\{\#\text{neighbors of } u\}$ times
- ▶ Therefore the total time DFS-VISIT is run is

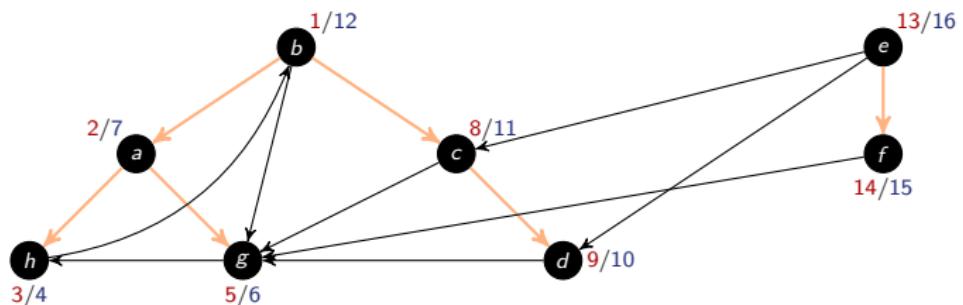
$$\sum_{u \in V} \{\#\text{neighbors of } u\} = \Theta(E)$$

Total Time: $\Theta(V + E)$

PROPERTIES OF DFS

Output of DFS

DFS forms a **depth-first forest** comprised of > 1 **depth-first trees**. Each tree is made of edges (u, v) such that u is gray and v is white when (u, v) is explored.



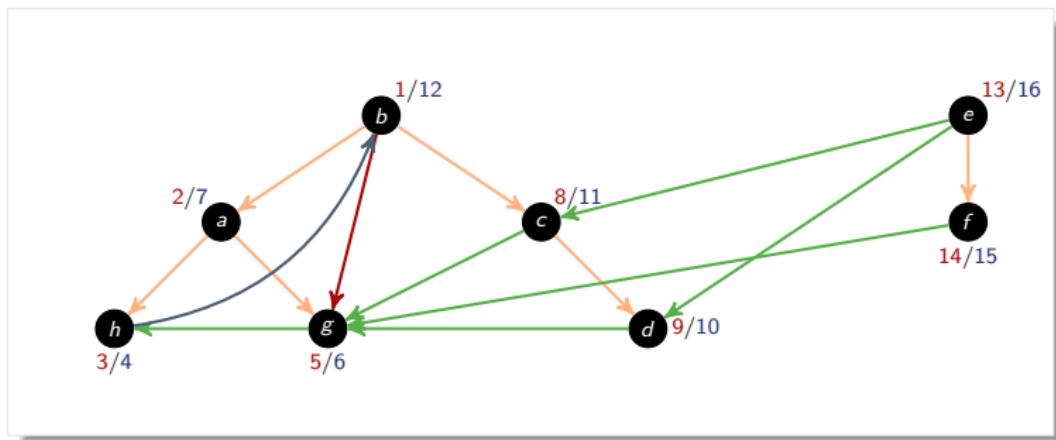
Classification of edges

Tree edge: In the depth-first forest, found by exploring (u, v)

Back edge: (u, v) where u is a descendant of v

Forward edge: (u, v) where v is a descendant of u , but not a tree edge

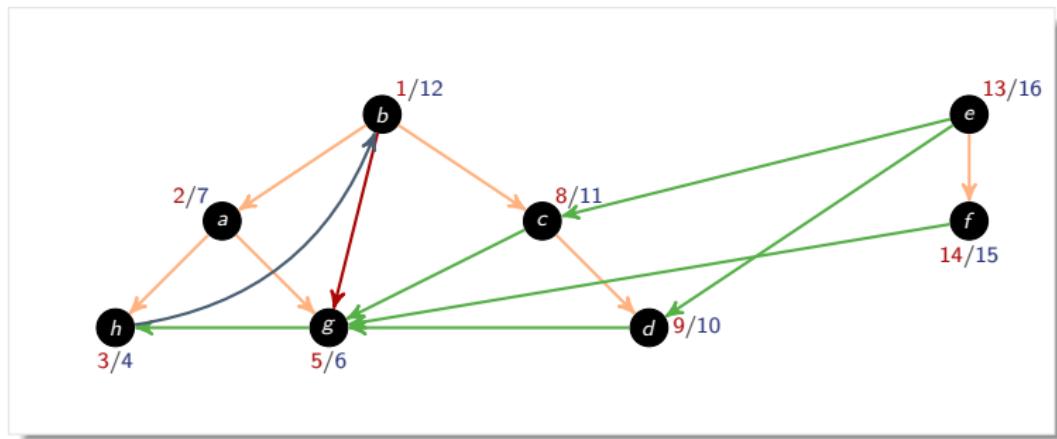
Cross edge: any other edge



Parenthesis theorem

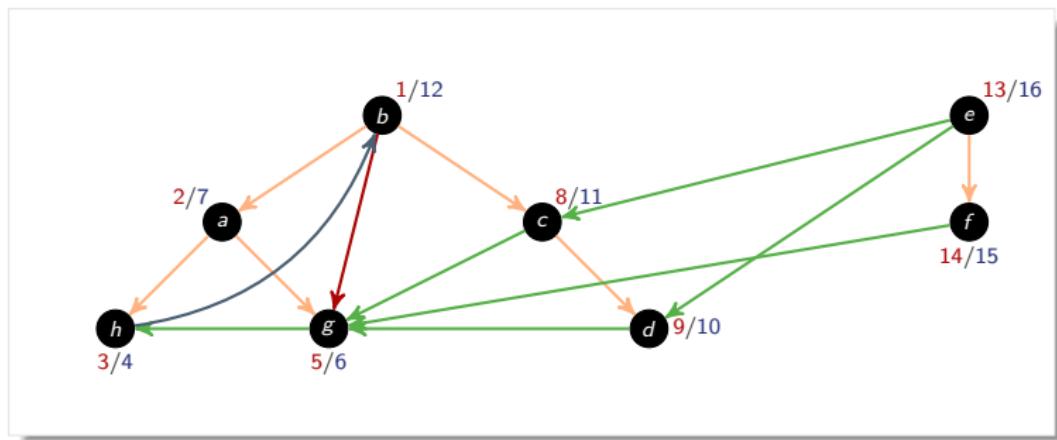
For all u, v exactly one of the following holds

- 1 $[u.d, u.f]$ and $[v.d, v.f]$ are disjoint neither of u and v are descendant of each other
- 2 $u.d < v.d < v.f < u.f$ and v is a descendant of u
- 3 $v.d < u.d < u.f < v.f$ and u is a descendant of v .



White-path theorem

Vertex v is a descendant of u if and only if at time $u.d$ there is a path from u to v consisting of only white vertices (except for u , which was just colored gray)



TOPOLOGICAL SORT

Application of DFS

Topological sort

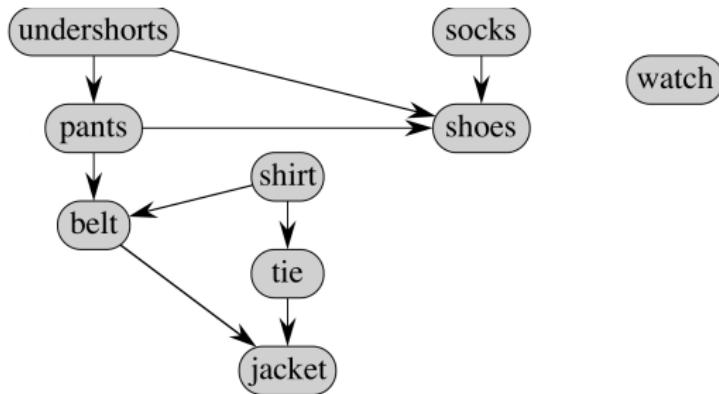
Definition

INPUT: A directed acyclic graph (DAG) $G = (V, E)$

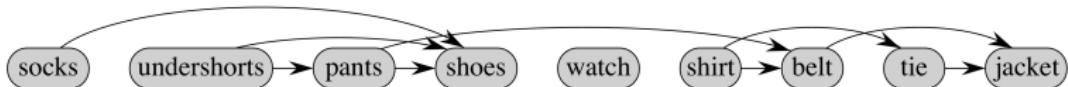
OUTPUT: a linear ordering of vertices such that if $(u, v) \in E$, then u appears somewhere before v

Example

Getting dressed in the morning:



in which order?



First: when is a directed graph acyclic?

PAGE 3			
DEPARTMENT	COURSE	DESCRIPTION	PREREQS
COMPUTER SCIENCE	CPSC 432	INTERMEDIATE COMPILER DESIGN, WITH A FOCUS ON DEPENDENCY RESOLUTION.	CPSC 432

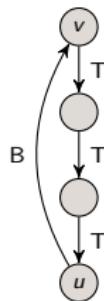
First: when is a directed graph acyclic?

Lemma

A directed graph G is acyclic if and only if a DFS of G yields no back edges

Proof. First show that back-edge implies cycle

Suppose there is a back edge (u, v) . Then v is ancestor of u in depth-first forest. Therefore there is a path from v to u , which creates a cycle.



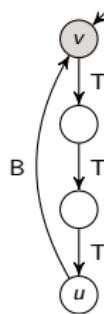
First: when is a directed graph acyclic?

Lemma

A directed graph G is acyclic if and only if a DFS of G yields no back edges

Proof. Second show that cycle implies back-edge

Let v be the first vertex discovered in the cycle C and let (u, v) be the preceding edge in C . At time $v.d$ vertices in C form a white-path from v to u and hence u is a descendant of v .

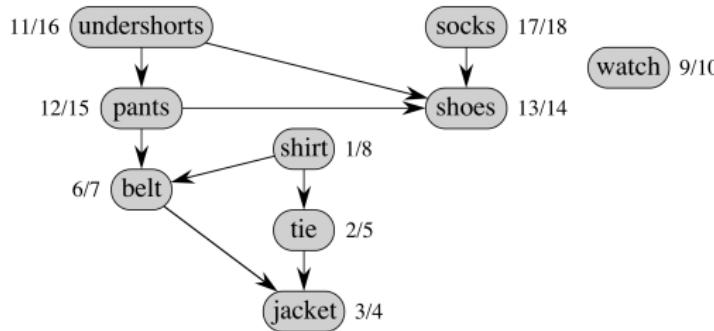
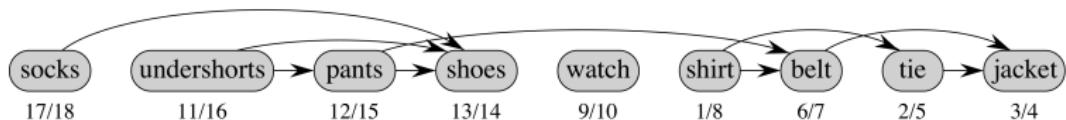


Algorithm for topological sort

TOPOLOGICAL-SORT(G):

1. Call $DFS(G)$ to compute finishing times $v.f$ for all $v \in G.V$
2. Output vertices in order of *decreasing* finishing times

Example



Time Analysis

TOPOLOGICAL-SORT(G):

1. Call $DFS(G)$ to compute finishing times $v.f$ for all $v \in G.V$
2. Output vertices in order of *decreasing* finishing times

Do not need to sort by finishing times

- ▶ Can just output vertices as they are finished and understand that we want the reverse of the list
- ▶ Or put them onto the front of a linked list as they are finished. When done, the list contains vertices in topologically sorted order.

Time: $\Theta(V + E)$ (same as DFS)

Correctness

Need to show that if $(u, v) \in E$ then $v.f < u.f$

When we explore (u, v) what are the colors of u and v ?

- ▶ u is gray
- ▶ Is v gray, too?
 - ▶ No, because then v would be ancestor of u which implies that there is a back edge so the graph is not acyclic (by previous Lemma)
- ▶ Is v white?
 - ▶ Then becomes descendant of u . By parenthesis theorem, $u.d < v.d < v.f < u.f$
- ▶ Is v black?
 - ▶ Then v is already finished. Since we are exploring (u, v) , we have not yet finished u . Therefore, $v.f < u.f$.

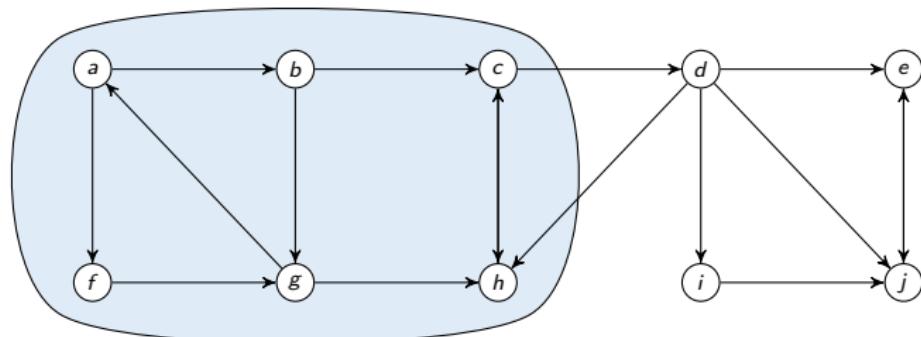
STRONGLY CONNECTED COMPONENTS

(A magic algorithm)

What is a Strongly Connected Component?

Definition: A strongly connected component (SCC) of a directed graph $G = (V, E)$ is a **maximal** set of vertices $C \subseteq V$ such that for all $u, v \in C$, both $u \rightsquigarrow v$ and $v \rightsquigarrow u$.

Example:

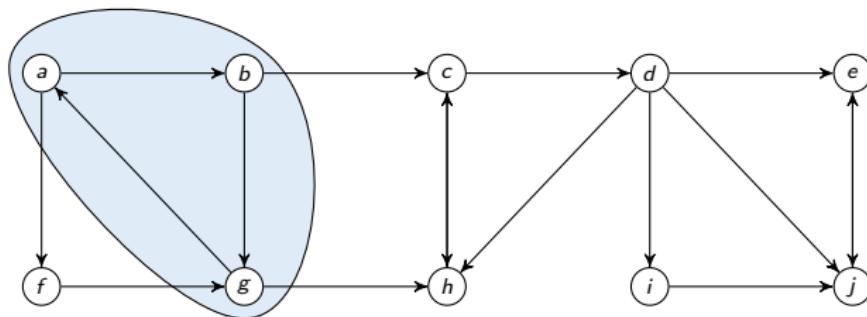


Is this a SCC? NO, because e.g. $c \not\rightsquigarrow b$

What is a Strongly Connected Component?

Definition: A strongly connected component (SCC) of a directed graph $G = (V, E)$ is a **maximal** set of vertices $C \subseteq V$ such that for all $u, v \in C$, both $u \sim v$ and $v \sim u$.

Example:

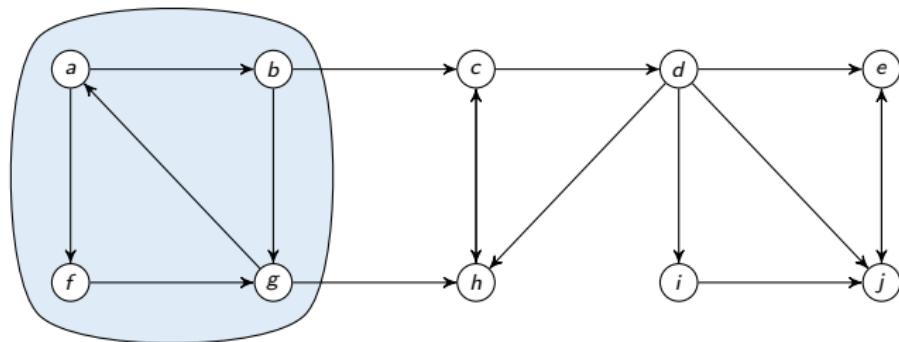


Is this a SCC? NO, because not maximal

What is a Strongly Connected Component?

Definition: A strongly connected component (SCC) of a directed graph $G = (V, E)$ is a **maximal** set of vertices $C \subseteq V$ such that for all $u, v \in C$, both $u \sim v$ and $v \sim u$.

Example:

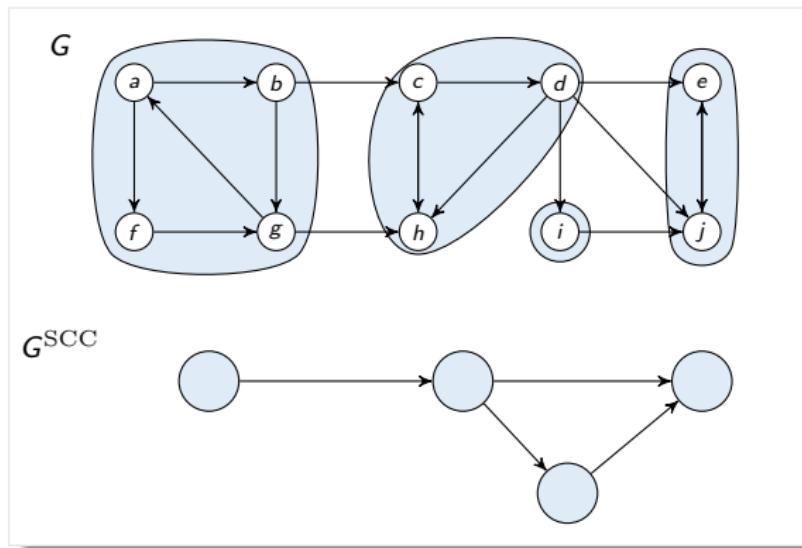


Is this a SCC? YES!

Component Graph

For a digraph $G = (V, E)$, its component graph $G^{\text{SCC}} = (V^{\text{SCC}}, E^{\text{SCC}})$ is defined by:

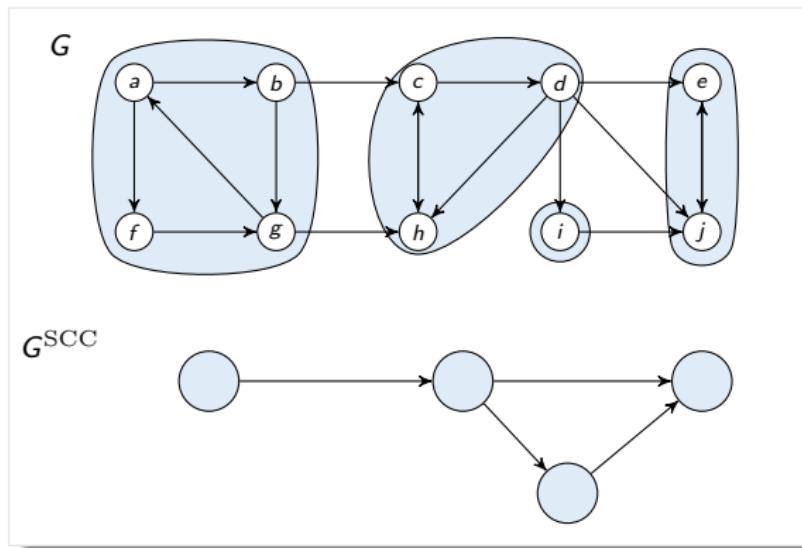
- ▶ V^{SCC} has a vertex for each SCC in G ;
- ▶ E^{SCC} has an edge if there's an edge between the corresponding SCC's in G .



Component Graph

For a digraph $G = (V, E)$, its component graph $G^{\text{SCC}} = (V^{\text{SCC}}, E^{\text{SCC}})$ is defined by:

- V^{SCC} has a vertex for each SCC in G ;
- E^{SCC} has an edge if there's an edge between the corresponding SCC's in G .



Lemma: G^{SCC} is a DAG.

Magic Algorithm

SCC(G):

1. Call DFS(G) to compute finishing times $u.f$ for all u .
2. Compute G^T
3. Call DFS(G^T) but in the main loop, consider vertices in order of decreasing $u.f$ (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC.

Graph G^T is the transpose of G :

- $G^T = (V, E)$, $E^T = \{(u, v) : (v, u) \in E\}$.
- G^T is G with all edges reversed.

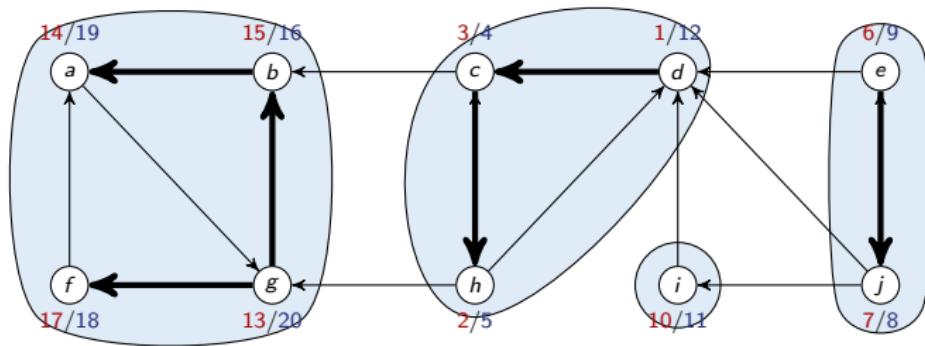
Observations:

- Can create G^T in $\Theta(V + E)$ time if using adjacency lists.
- G and G^T has the same SCCs.

Magic Algorithm

SCC(G):

1. Call DFS(G) to compute finishing times $u.f$ for all u .
2. Compute G^T
3. Call DFS(G^T) but in the main loop, consider vertices in order of decreasing $u.f$ (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC.



Analysis

SCC(G):

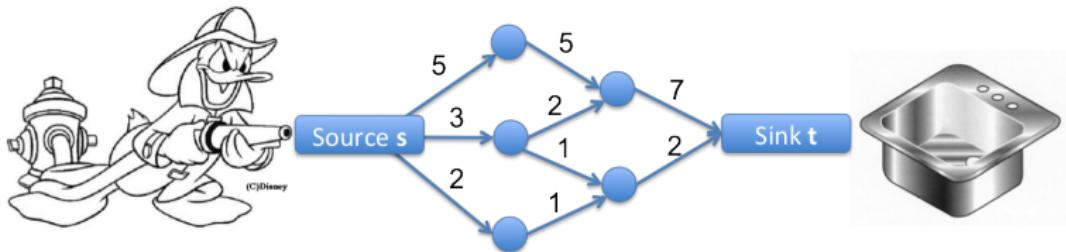
1. Call DFS(G) to compute finishing times $u.f$ for all u .
2. Compute G^T
3. Call DFS(G^T) but in the main loop, consider vertices in order of decreasing $u.f$ (as computed in first DFS).
4. Output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC.

Runtime analysis: Each step takes $\Theta(V + E)$ so total running time is $\Theta(V + E)$

Why does it work? Intuition:

- The first DFS orders SCC's in topological order (recall G^{SCC} is acyclic)
- Second DFS then outputs the vertices in each SCC

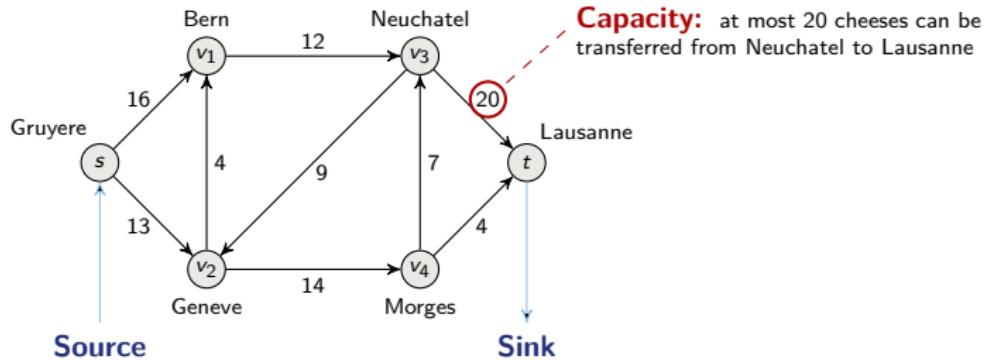
Formal proof in book



FLOW NETWORKS

Flow Network

Transfer as much cheese as possible from Gruyere to Lausanne

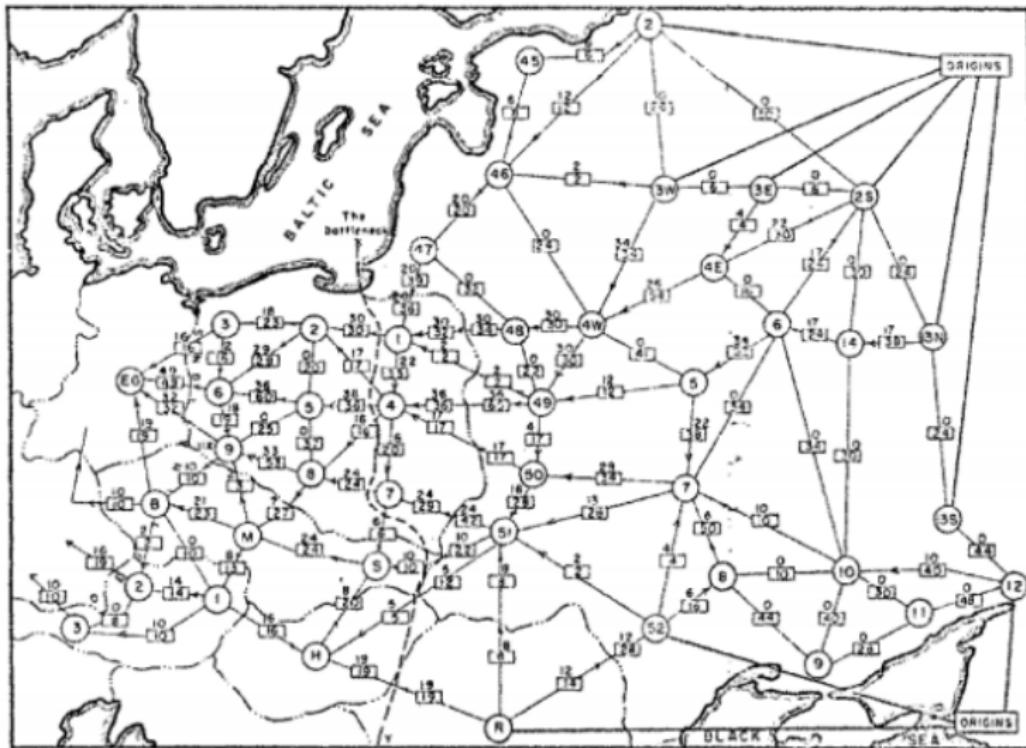


- ▶ a graph to model flow through edges (pipes)
- ▶ each edge has a capacity an upper bound on the flow rate (pipes have different sizes)
- ▶ Want to maximize rate of flow from the source to the sink

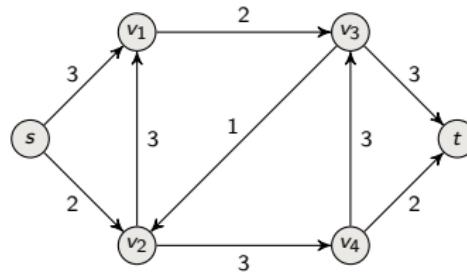
Tons of applications



Tons of applications



Flow Network (formally)

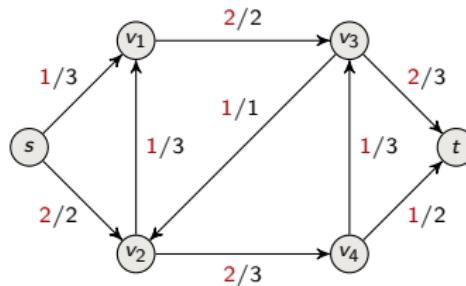


- Directed graph $G = (V, E)$
- Each edge (u, v) has a capacity $c(u, v) \geq 0$ ($c(u, v) = 0$ if $(u, v) \notin E$)
- Source s and sink t (flow goes from s to t)
- No antiparallel edges (assumed w.l.o.g. for simplicity)

Why is “no antiparallel edges” w.l.o.g.?

- ▶ If there are two parallel edges (u, v) and (v, u) , choose one of them say (u, v)
- ▶ Create a new vertex v'
- ▶ Replace (u, v) by two new edges (u, v') and (v', v) with $c(u, v') = c(v', u) = c(u, v)$
- ▶ Repeat this $O(E)$ times to get an equivalent flow network with no antiparallel edges.

Definition of a flow



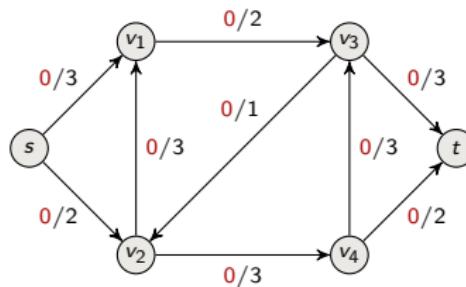
A flow is a function $f : V \times V \rightarrow \mathbb{R}$ satisfying:

Capacity constraint: For all $u, v \in V$: $0 \leq f(u, v) \leq c(u, v)$

Flow conservation: For all $u \in V \setminus \{s, t\}$,

$$\underbrace{\sum_{v \in V} f(v, u)}_{\text{flow into } u} = \underbrace{\sum_{v \in V} f(u, v)}_{\text{flow out of } u}$$

Definition of a flow



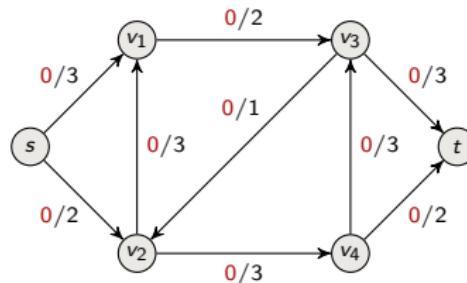
A flow is a function $f : V \times V \rightarrow \mathbb{R}$ satisfying:

Capacity constraint: For all $u, v \in V$: $0 \leq f(u, v) \leq c(u, v)$

Flow conservation: For all $u \in V \setminus \{s, t\}$,

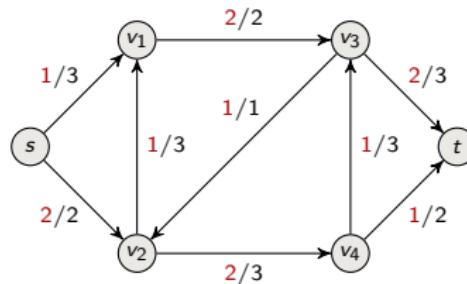
$$\underbrace{\sum_{v \in V} f(v, u)}_{\text{flow into } u} = \underbrace{\sum_{v \in V} f(u, v)}_{\text{flow out of } u}$$

Value of a flow



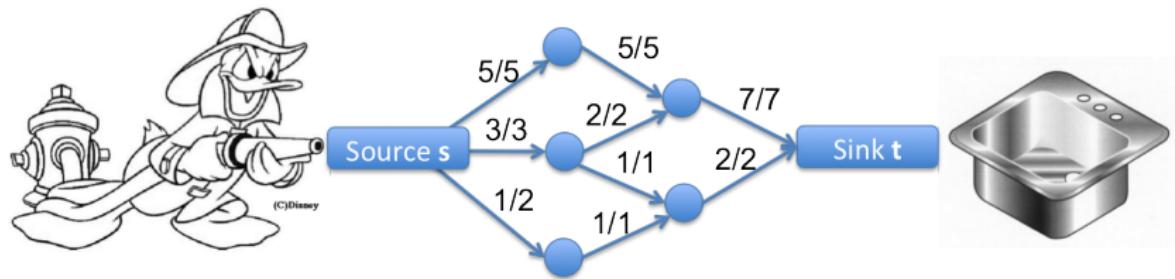
$$\begin{aligned}\text{Value of a flow } f &= |f| \\ &= \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) \\ &= \text{flow out of source} - \text{flow into source}\end{aligned}$$

Value of a flow



$$\begin{aligned}\text{Value of a flow } f &= |f| \\ &= \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) \\ &= \text{flow out of source} - \text{flow into source}\end{aligned}$$

What's the value of this flow? 9



L. R. Ford, Jr. (1927-)

D. R. Fulkerson (1924-1976)

MAXIMUM-FLOW PROBLEM

Ford-Fulkerson Method

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

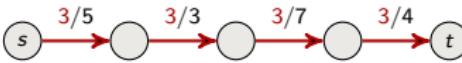
1. Initialize flow f to 0
2. **while** exists an **augmenting path** p in the **residual network** G_f
3. **augment flow** f along p
4. **return** f

Basic idea:

- ▶ As long as there is a path from source to sink, with available capacity on all edges in the path
- ▶ send flow along one of these paths and then we find another path and so on

Applying the basic idea to examples

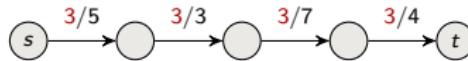
- ▶ As long as there is a path from source to sink, with available capacity on all edges in the path
- ▶ send flow along one of these paths and then we find another path and so on



Exists a path p from s to t
with remaining capacity
 \Rightarrow Push flow on p

Applying the basic idea to examples

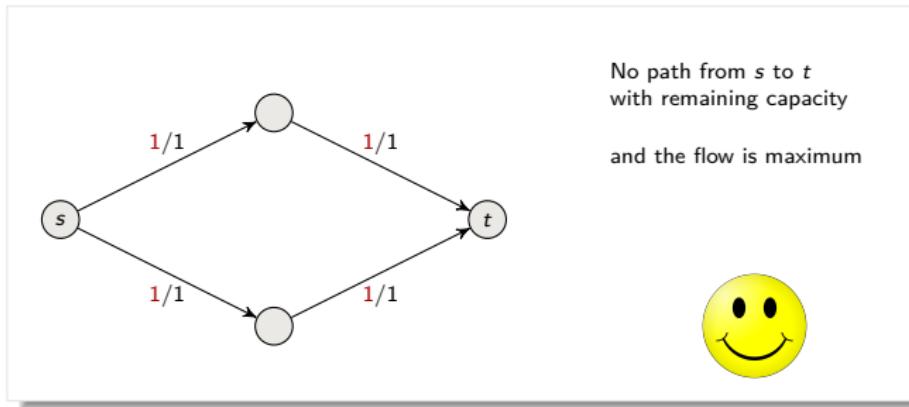
- ▶ As long as there is a path from source to sink, with available capacity on all edges in the path
- ▶ send flow along one of these paths and then we find another path and so on



No path from s to t
with remaining capacity
and the flow is maximum

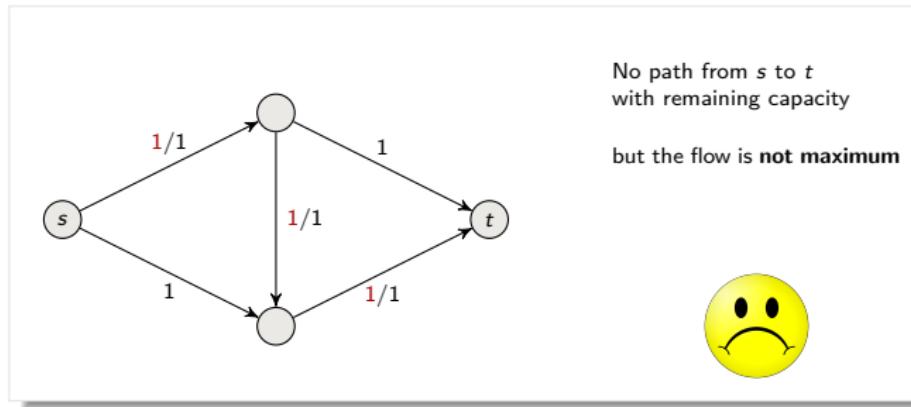
Applying the basic idea to examples

- ▶ As long as there is a path from source to sink, with available capacity on all edges in the path
- ▶ send flow along one of these paths and then we find another path and so on



Applying the basic idea to examples

- ▶ As long as there is a path from source to sink, with available capacity on all edges in the path
- ▶ send flow along one of these paths and then we find another path and so on



What went wrong? How can we fix it?

Residual network

- Given a flow f and a network $G = (V, E)$
- the residual network consists of edges with capacities that represent how we can change the flow on the edges

Residual capacity:

$$c_f(u, v) = \begin{cases} c(u, v) - f(u, v) & \text{if } (u, v) \in E \\ f(v, u) & \text{if } (v, u) \in E \\ 0 & \text{otherwise} \end{cases}$$

Amount of capacity left

Amount of flow that can be reversed

Residual network:

$$G_f = (V, E_f) \text{ where } E_f = \{(u, v) \in V \times V : c_f(u, v) > 0\}$$

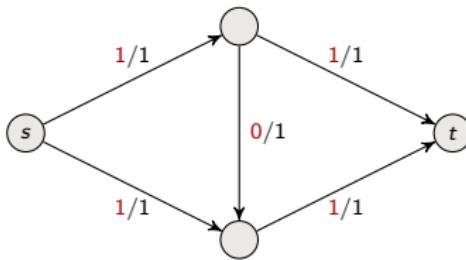
The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

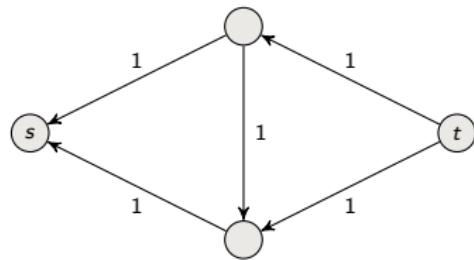
1. Initialize flow f to 0
2. **while** exists an augmenting path p in the residual network G_f
3. augment flow f along p
4. **return** f

No augmenting path and flow of value 2 is optimal

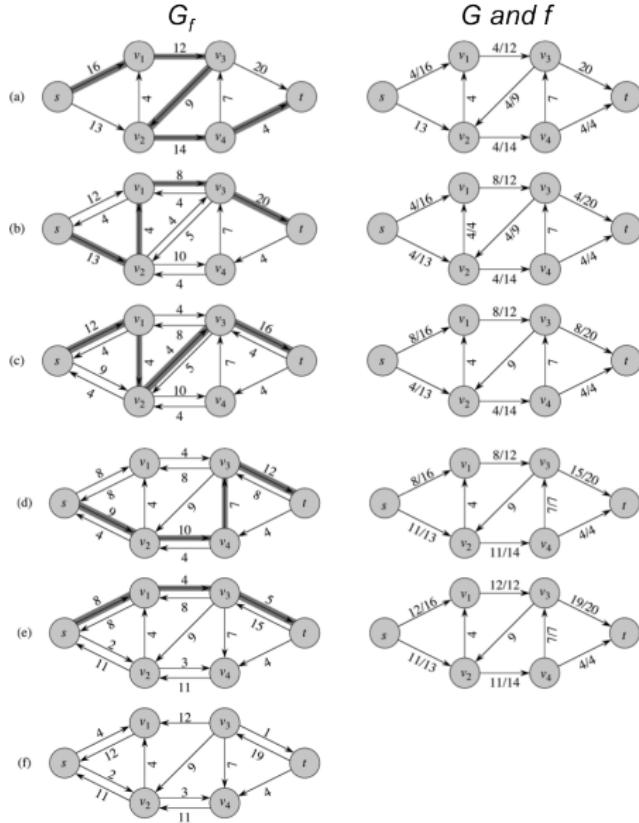
G and f



G_f



Study and
understand
Example!



Summary

- ▶ Graphs fundamental object to study
- ▶ Two natural ways of traversing a graph: breadth-first search and depth-first search
- ▶ Topological sort of acyclic graphs by applying DFS and then order according to decreasing finishing times
- ▶ Strongly connected components
- ▶ Flow Networks